Abstract

In a broader application of sequence stratigraphic concept to a tectonically active margin setting, this study presents a sequence model that considers all three controls on sequence development (i.e. eustasy, tectonic movement and sediment supply) as independent variables. The model introduces six sequence types (A to F) including type 1 and type 2 sequences defined in the original Exxon scheme. Each sequence shows a variety in number and stacking pattern of its constituent parasequence sets reflecting combined effects of accommodation change and sediment supply. This model is applied to a seismic sequence analysis of the shelf–slope system (middle to upper Miocene) in the southwestern margin of Ulleung Basin which has experienced significant crustal deformation during the Tertiary back-arc opening and subsequent closing of the East Sea (Sea of Japan). The model application delineates four sequence types whose development is closely associated with the tectonic evolution of the Ulleung Basin margin. During the back-arc opening (early to middle Miocene), type A and B sequences were emplaced as a result of steady creation of accommodation space due to a rapid subsidence combined with a tectonic-controlled high to moderate rate of sediment supply. The sequences associated with the extensional tectonism are characterized by active progradation and aggradation without forced regressive phases. In the initiation stage of back-arc closure (middle to late Miocene), subsidence rates were significantly reduced because of a widespread contractional deformation, while subaerial erosion of the uplifted thrust belt resulted in an increase in sedimentation rate. As a result, steady prograding type-E sequences were formed by alternating normal and forced regressions. During the quiescent phase of back-arc closure in the late Miocene, rise-dominant fluctuating relative sea-level change and moderate to low sediment supply gave rise to type-F sequences (similar to type-1 sequences of the Exxon group) reflecting a major control of eustatic sea-level change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call