Abstract

It appeared certain that elastin condensates retain liquid-like properties. However, a recent experimental study demonstrated that their aggregate states might depend on the length of hydrophobic domains. To gain microscopic insight into this behavior, we employ atomistic modeling to assess the conformational properties of hydrophobic elastin-like polypeptides (ELPs). We find that short ELPs always remain in coil-like conformations, while the longer ones prefer globule states. While the former engages in intrapeptide hydrogen bonds temporarily, retaining their liquid-like properties, the latter forms hundreds of nanosecond-long intrapeptide hydrogen bonds attributed to ordered secondary structure motifs. Our work demonstrates that the sequence length modulates the material properties of elastin condensates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.