Abstract

The three-dimensional structures of homologous proteins are usually conserved during evolution, as are critical residues in a few short sequence motifs that often constitute the active site in enzymes. The precise spatial organization of such sites depends on the lengths and positions of the secondary structural elements connecting the motifs. We show how members of protein superfamilies, such as kinesins, myosins, and Gα subunits of trimeric G proteins, are identified and classed by simply counting the number of amino acid residues between important sequence motifs in their nucleotide triphosphate-hydrolyzing domains. Subfamily-specific landmark patterns (motif to motif scores) are principally due to inserts and gaps in surface loops. Unusual protein sequences and possible sequence prediction errors are detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.