Abstract

We investigate lifting, i.e., the process of taking a valid inequality for a polyhedron and extending it to a valid inequality in a higher dimensional space. Lifting is usually applied sequentially, that is, variables in a set are lifted one after the other. This may be computationally unattractive since it involves the solution of an optimization problem to compute a lifting coefficient for each variable. To relieve this computational burden, we study sequence independent lifting, which only involves the solution of one optimization problem. We show that if a certain lifting function is superadditive, then the lifting coefficients are independent of the lifting sequence. We introduce the idea of valid superadditive lifting functions to obtain good aproximations to maximum lifting. We apply these results to strengthen Balas' lifting theorem for cover inequalities and to produce lifted flow cover inequalities for a single node flow problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.