Abstract

The DNA topoisomerases I and II are the target of several clinically important antineoplastic agents which produce DNA cleavage by stabilization of the covalent DNA-protein bond with resultant cell death after DNA synthesis is attempted. Depletion of the target topoisomerase and reciprocal changes in the other occur with drug treatment. To develop empiric treatment regimens of combinations and sequences of agents directed against topoisomerase I (irinotecan/CPT-11) and II (etoposide and doxorubicin), in vivo studies were performed in mice bearing the EMT-6 mammary tumor to assess efficacy, host tolerance and the resultant biochemical changes in topoisomerase mRNA and protein. At 24 h after therapy, depletion of the target topoisomerase mRNA and protein with reciprocal increases in the alternate topoisomerase mRNA and, to a lesser extent, protein were noted. No therapeutic antagonism was found with any combination or sequence of agents, and therapeutic antagonism was noted with concurrent irinotecan/etoposide and sequential doxorubicin/irinotecan. Depletion of target topoisomerases by combined therapy beyond a threshold necessary for therapeutic efficacy produced no additional benefit. Antineoplastic therapy with combinations of topoisomerase I and II agents is feasible and may produce therapeutic synergy. The appropriate sequence may depend on the particular agents used. The rationale for such therapy, that topoisomerases I and II may have reciprocal and compensatory interactions, is supported by the biochemical data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call