Abstract

Beyond the emergence of plasmid-encoded mechanisms, mutation within the pmrAB genes remains one of the primary colistin resistance mechanisms in Escherichia coli. However, the mechanisms of high-level colistin resistance (HLCR) have not been elucidated. In this study, we evaluated the HLCR mechanisms in five colistin-susceptible Avian pathogenic Escherichia coli (APEC) isolates after colistin exposure. Three PmrB substitutions (G19R, L167P, V88E) and two PmrB sequence duplication (PmrB-sd) mutations (68-77dup and 94-156dup) were detected. Chromosomal replacement and deletion mutagenesis revealed the two PmrB-sd mutations contribute to, but are not fully responsible for, HLCR in APEC strains. Quantitative reverse transcription/polymerase chain reaction (qRT-PCR) revealed that the PmrB-sd induction mutants showed an increased pmrAB transcript level and the PmrB-sd reversion mutants exhibited a reduction of pmrAB expression. All five induction mutants exhibited decreased minimum inhibitory concentrations to florfenicol and tetracycline. In addition, four mutants (G19R, L167P, V88E, and 94-156dup) and two mutants (68-77dup and 94-156dup) also displayed increased sensitivity to ceftiofur and gentamicin, respectively. Zeta potential measurement of the induction mutants showed that there was less negative charge on the cell surface compared with its parental strains in the absence of colistin. The induction mutants also showed an increase of lag time and decrease of fitness. In summary, the identification of novel PmrB-sd mutations contributing to HLCR is helpful to broaden the knowledge of colistin resistance. Attention should be paid to the use of colistin for the treatment of infections caused by APEC strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call