Abstract

The stabilities of 66 sequence variants of the human Pin1 WW domain have been determined by equilibrium thermal denaturation experiments. All 34 residues composing the hPin1 WW three-stranded beta-sheet structure could be replaced one at a time with at least one different natural or non-natural amino acid residue without leading to an unfolded protein. Alanine substitutions at only four positions within the hPin1 WW domain lead to a partially or completely unfolded protein-in the absence of a physiological ligand. The side chains of these four residues form a conserved, partially solvent-inaccessible, continuous hydrophobic minicore comprising the N- and C-termini. Ala mutations at five other residues, three of which constitute the ligand binding patch on the concave side of the beta-sheet, significantly destabilize the hPin1 WW domain without leading to an unfolded protein. The remaining mutations affect protein stability only slightly, suggesting that only a small subset of side chain interactions within the hPin1 WW domain are mandatory for acquiring and maintaining a stable, cooperatively folded beta-sheet structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call