Abstract

Recent single-molecule micromanipulation experiments on DNA subject to small distortion revealed positive coupling between DNA stretching and twisting—for instance, DNA elongates when overtwisted. Here we propose a method to calculate the twist-stretch coupling constant specific to a DNA fragment of a given sequence. The method employs a sequence-dependent dinucleotide force field and is based on constrained minimization of the fragment’s deformation energy. Using a force field inferred from atomistic molecular dynamics simulations, we obtain the twist-stretch coupling for random sequence to be 0.30 nm/turn, close to experimental values. An exhaustive calculation for all oligomers of nine basepairs yields values between 0.14 and 0.45 nm/turn, positively correlated with the contents of pyrimidine-purine steps in the sequence. Our method is simple to use and allows one to explore the hypothesis that some sequences may be optimized for twist-stretch coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.