Abstract

We report spin-selective tunneling of electrons along natural and artificial double-stranded DNA (dsDNA) sandwiched by nonmagnetic leads. The results reveal that the spin polarization strongly depends on the dsDNA sequence and is dominated by its end segment. Both genomic and artificial dsDNA could be efficient spin filters. The spin-filtering effects are sensitive to point mutation which occurs in the end segment. These results are in good agreement with recent experiments and are robust against various types of disorder, and could help for designing DNA-based spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call