Abstract

The mechanism by which the cytidine deaminase activation-induced deaminase (AID) acts at immunoglobulin heavy-chain class switch regions during mammalian class switch recombination (CSR) remains unclear. R-loops have been proposed as a basis for this targeting. Here, we show that the difference between various forms of the Smu locus that can or cannot undergo CSR correlates well with the locations and detectability of R-loops. The Smu R-loops can initiate hundreds of base pairs upstream of the core repeat switch regions, and the area where the R-loops initiate corresponds to the zone where the AID mutation frequency begins to rise, despite a constant density of WRC sites in this region. The frequency of R-loops is 1 in 25 alleles, regardless of the presence of the core Smu repeats, again consistent with the initiation of most R-loops upstream of the core repeats. These findings explain the surprisingly high levels of residual CSR in B cells from mice lacking the core Smu repeats but the marked reduction in CSR in mice with deletions of the region upstream of the core Smu repeats. These studies also provide the first analysis of how R-loop formation in the eukaryotic chromosome depends on the DNA sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.