Abstract

Diastereomeric N6-substituted dAdo adducts (cis B[c]PhDE-2/1R and cis B[c]PhDE-2/1S) that correspond to cis-opening at C-1 of the enantiomeric benzo[c]phenanthrene 3,4-diol 1,2-epoxides in which the epoxide oxygen and the benzylic hydroxyl group are trans (DE-2) were synthetically incorporated into oligonucleotide 16-mers. Each adduct was placed at the fourth nucleotide from the 5'-end of each of two different oligonucleotide sequences derived from the E. coli supF gene. Each adduct was also placed in two additional oligonucleotide sequences that were constructed by interchanging the adduct site and the immediately adjacent nucleotides between the two original sequences. These oligonucleotides were designed for use in site-specific mutation studies, with a single-stranded bacteriophage M13mp7L2 vector, to determine if the effects of sequence context on types and frequencies of base substitution mutations are attributable only to nucleotides immediately adjacent to these polycyclic aromatic hydrocarbon diol epoxide-dAdo adducts, or whether more distant nucleotide residues also affect the mutagenic response. In SOS-induced Escherichia coli SMH77, total base substitution mutation frequencies for the cis B[c]PhDE-2/1R-dAdo adduct were relatively low (0.62-5.6%) compared with those for the cis B[c]PhDE-2/1S-dAdo adduct (11.9-56.5%). Depending on sequence context, cis B[c]PhDE-2/1R-dAdo gave predominantly A-->T or a more equal distribution of A-->T and A-->G mutations whereas cis B[c]PhDE-2/1S-dAdo gave either predominantly A-->T or predominantly A-->G base substitutions. Our results clearly indicate that nucleotides that are distal as well as those that are proximal to the adduct site are capable of influencing both the mutation frequency and the distribution of base substitution mutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call