Abstract

The proliferation of sensor devices monitoring human activity generates voluminous amount of temporal sequences needing to be interpreted and categorized. Moreover, complex behavior detection requires the personalization of multi-sensor fusion algorithms. Conditional random fields (CRFs) are commonly used in structured prediction tasks such as part-of-speech tagging in natural language processing. Conditional probabilities guide the choice of each tag/label in the sequence conflating the structured prediction task with the sequence classification task where different models provide different categorization of the same sequence. The claim of this paper is that CRF models also provide discriminative models to distinguish between types of sequence regardless of the accuracy of the labels obtained if we calibrate the class membership estimate of the sequence. We introduce and compare different neural network based linear-chain CRFs and we present experiments on two complex sequence classification and structured prediction tasks to support this claim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.