Abstract
Melanocortin 1 receptor (MC1R) gene plays a key role in determining coat color in several species, including the cattle. However, up to now there is no report regarding the MC1R gene and the potential association of its mutations with coat colors in yak (Poephagus grunniens). In this study, we sequenced the encoding region of the MC1R gene in three yak breeds with completely white (Tianzhu breed) or black coat color (Jiulong and Maiwa breeds). The predicted coding region of the yak MC1R gene resulted of 954 bp, the same to that of the wild-type cattle sequence, with >99% identity. None of the mutation events reported in cattle was found. Comparing the yak obtained sequences, five nucleotide substitutions were detected, which defined three haplotypes (EY1, EY2, and EY3). Of the five mutations, two, characterizing the EY1 haplotype, were nonsynonymous substitutions (c.340C>A and c.871G>A) causing amino acid changes located in the first extracellular loop (p.Q114K) and in the seventh transmembrane region (p.A291T). In silico prediction might indicate a functional effect of the latter substitution. However, all three haplotypes were present in the three yak breeds with relatively consistent frequency distribution, despite of their distinguished coat colors, which suggested that there was no across-breed association between haplotypes or genotypes and black/white phenotypes, at least in the investigated breeds. Other genes may be involved in affecting coat color in the analyzed yaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.