Abstract

In brain machine interfaces (BMI), the brain activities are recorded by invasive or noninvasive approaches and translated into command signals to control external prosthetic devices such as a computer cursor, a wheelchair, or a robotic arm. Although many studies confirmed the capability of BMI systems in controlling multi degrees-of-freedom (DOF) prosthetic devices using invasive approaches, BMI research using noninvasive paradigms is still in its infancy. In this paper, a new robotic BMI platform has been developed using electroencephalography (EEG) technology to control a 6-DOF robotic arm. EEG signals were collected from the scalp using a wireless headset exploiting a new fast-training paradigm named as “imagined body kinematics”. A regression model was employed to decode the kinematic parameters from the EEG signals. The subjects were instructed to voluntarily control a virtual cursor in multiple trials to hit different pre-programmed targets on a screen in an optimized sequence. The command signals generated from hitting the targets during trials were applied to control sequential movements of the robotic arm in a discrete manner to manipulate an object in a two-dimensional workspace. This approach is derived from a basic shared control strategy where the robotic arm is responsible for carrying out complex maneuvers based on the user’s intention. Our proposed BMI platform yielded a high success rate of 70% in a sequence-based manipulation task after only a short time of training (10 min). The developed platform serves as a proof-of-concept for EEG-based neuro-prosthetic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.