Abstract

Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this review, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.