Abstract

An 890-bp sequence from the central region of Drosophila melanogaster 26S ribosomal DNA (rDNA) has been determined and used in an extensive comparative analysis of the central domain of the large subunit ribosomal RNA (lrRNA) from prokaryotes, organelles, and eukaryotes. An alignment of these different sequences has allowed us to precisely map the regions of the central domain that have highly diverged during evolution. Using this sequence comparison, we have derived a secondary structure model of the central domain of Drosophila 26S ribosomal RNA (rRNA). We show that a large part of this model can be applied to the central domain of lrRNA from prokaryotes, eukaryotes, and organelles, therefore defining a universal common structural core. Likewise, a comparative study of the secondary structure of the divergent regions has been performed in several organisms. The results show that, despite a nearly complete divergence in their length and sequence, a common structural core is also present in divergent regions. In some organisms, one or two of the divergent regions of the central domain are removed by processing events. The sequence and structure of these regions (fragmentation spacers) have been compared to those of the corresponding divergent regions that remain part of the mature rRNA in other species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call