Abstract
Peanut, like most legumes, develops a symbiotic relationship with rhizobia to overcome nitrogen limitation. Rhizobial infection of peanut roots occurs through a primitive and poorly characterized intercellular mechanism. Knowledge of the molecular determinants of this symbiotic interaction is scarce, and little is known about the molecules implicated in the recognition of the symbionts. Here, we identify the LysM extracellular domain sequences of two putative peanut Nod factor receptors, named AhNFR1 and AhNFP. Phylogenetic analyses indicated that they correspond to LjNFR1 and LjNFR5 homologs, respectively. Transcriptional analysis revealed that, unlike LjNFR5, AhNFP expression was not induced at 8h post bradyrhizobial inoculation. Further examination of AhNFP showed that the predicted protein sequence is identical to GmNFR5 in two positions that are crucial for Nod factor perception in other legumes. Analysis of the AhNFP LysM2 tridimensional model revealed that these two amino acids are very close, delimiting a zone of the molecule essential for Nod factor recognition. These data, together with the analysis of the molecular structure of Nod factors of native peanut symbionts previously reported, suggest that peanut and soybean could share some of the determinants involved in the signalling cascade that allows symbiosis establishment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.