Abstract

Human coronaviruses (HCV) are ubiquitous pathogens which cause respiratory, gastrointestinal, and possibly neurological disorders. To better understand the molecular biology of the prototype HCV-229E strain, the complete nucleotide sequence of the membrane protein (M) gene was determined from cloned cDNA. The open reading frame is preceded by a consensus transcriptional initiation sequence UCUAAACU, identical to the one found upstream of the N gene. The M gene encodes a 225-amino acid polypeptide with a molecular weight (MW) of 25,822, slightly higher than the apparent MW of 19,000–22,000 observed for the unprocessed M protein obtained after in vitro translation and immunoprecipitation. The M amino acid sequence presents a significant degree of homology (38%) with its counterpart of transmissible gastroenteritis coronavirus (TGEV). The M protein of HCV-229E is highly hydrophobic and its hydropathicity profile shows a transmembranous region composed of three major hydrophobic domains characteristic of a typical coronavirus M protein. About 10% (20 amino acids) of the HCV-229E M protein constitutes a hydrophilic and probably external portion. One N-glycosylation and three potential O-glycosylation sites are found in this exposed domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call