Abstract

Salmonid whirling disease caused by the metazoan parasite Myxobolus cerebralis is an ongoing problem in wild and farmed rainbow trout Oncorhynchus mykiss populations. Rainbow trout from different strains vary in susceptibility to the parasite. Identification of underlying mechanisms could be a starting point for improved control of the disease. We conducted infection trials using 2 rainbow trout strains and brown trout Salmo trutta fario, a species not susceptible to the parasite, to investigate host immune response and resistance mechanisms. We compared expression levels of 2 natural resistance-associated macrophage proteins (Nramp alpha and beta) after infection with M. cerebralis. Total RNA was extracted from skin, muscle, kidney, head and spinal column, and gene expression was quantified by real-time PCR. Significant decreases in expression of both genes were observed at different time points in the infected susceptible rainbow trout compared to the non-infected group. Furthermore, the OmNramp alpha (O. mykiss natural resistance-associated macrophage protein alpha) sequences in 2 resistant and 1 non-resistant rainbow trout strain were analysed and compared for sequence aberrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.