Abstract

We have sequenced 11 representative mutations of the unc-54 myosin heavy chain gene of Caenorhabditis elegans that affect the synthesis, assembly or enzymatic activity of the encoded myosin heavy chain. Six of the sequenced unc-54 mutations cause premature termination of protein synthesis. Four mutations ( e1092, e1115, e1213, e1328) were ochre mutations, one mutation ( e903) was a frameshift, which caused premature termination at a nearby UGA terminator, and one mutation ( e190) was a deletion that altered the reading frame and caused termination at an ochre codon. Two mutations ( e675 and s291) were inphase deletions, which resulted in a shortened myosin rod segment. These aberrant myosins fail to assemble into normal thick filaments. The sequence alterations of the missense mutations ( e1152, s74, s95) indicated amino acid residues that are critical for myosin function. The mutation e1152 causes the production of a myosin heavy chain that fails to assemble into thick filaments. It had two adjacent amino acid substitutions at the extreme amino terminus of the rod, indicating a role for subfragment-2 in thick filament assembly. Mutants homozygous for s74 or s95 are very slow-moving, although they make myosin heavy chains that assemble normally. The encoded amino acid substitutions of s95 and s74 are in the 23 × 10 3 M r and 50 × 10 3 M r domains of the myosin head, flanking the ATP binding site. The sequenced mutations are distributed throughout the gene in the order predicted from genetic fine-structure mapping experiments. Seven of eight point mutations isolated following ethylmethane sulphonate mutagenesis were G · C to A · T transitions. A single X-ray-induced allele proved to be a deletion of two adjacent thymidine residues. The three deletion mutations were found in a region of the myosin rod with numerous direct and inverted nucleotide sequence repeats, but their origin cannot be accounted for by homologous recombination. Instead, a comparison of the deletion junctions suggests that the deletions arose by a site-specific mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.