Abstract

Primary ciliary dyskinesia (PCD) is a rare genetic disorder, which shows extensive genetic heterogeneity and is mostly inherited in an autosomal recessive fashion. There are four genes with a proven pathogenetic role in PCD. DNAH5 and DNAI1 are involved in 28 and 10% of PCD cases, respectively, while two other genes, DNAH11 and TXNDC3, have been identified as causal in one PCD family each. We have previously identified a 3.5 cM (2.82 Mb) region on chromosome 15q linked to Kartagener syndrome (KS), a subtype of PCD characterized by the randomization of body organ positioning. We have now refined the KS candidate region to a 1.8 Mb segment containing 18 known genes. The coding regions of these genes and three neighboring genes were subjected to sequence analysis in seven KS probands, and we were able to identify 60 single nucleotide sequence variants, 35 of which resided in mRNA coding sequences. However, none of the variations alone could explain the occurrence of the disease in these patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.