Abstract

The gene encoding threonyl-tRNA synthetase (Thr-tRNA synthetase) from the extreme thermophilic eubacterium Thermus thermophilus HB8 has been cloned and sequenced. The ORF encodes a polypeptide chain of 659 amino acids (Mr 75 550) that shares strong similarities with other Thr-tRNA synthetases. Comparative analysis with the three-dimensional structure of other subclass IIa synthetases shows it to be organized into four structural modules: two N-terminal modules specific to Thr-tRNA synthetases, a catalytic core and a C-terminal anticodon-binding module. Comparison with the three-dimensional structure of Escherichia coli Thr-tRNA synthetase in complex with tRNAThr enabled identification of the residues involved in substrate binding and catalytic activity. Analysis by atomic absorption spectrometry of the enzyme overexpressed in E. coli revealed the presence in each monomer of one tightly bound zinc atom, which is essential for activity. Despite strong similarites in modular organization, Thr-tRNA synthetases diverge from other subclass IIa synthetases on the basis of their N-terminal extensions. The eubacterial and eukaryotic enzymes possess a large extension folded into two structural domains, N1 and N2, that are not significantly similar to the shorter extension of the archaebacterial enzymes. Investigation of a truncated Thr-tRNA synthetase demonstrated that domain N1 is not essential for tRNA charging. Thr-tRNA synthetase from T. thermophilus is of the eubacterial type, in contrast to other synthetases from this organism, which exhibit archaebacterial characteristics. Alignments show conservation of part of domain N2 in the C-terminal moiety of Ala-tRNA synthetases. Analysis of the nucleotide sequence upstream from the ORF showed the absence of both any anticodon-like stem-loop structure and a loop containing sequences complementary to the anticodon and the CCA end of tRNAThr. This means that the expression of Thr-tRNA synthetase in T. thermophilus is not regulated by the translational and trancriptional mechanisms described for E. coli thrS and Bacillus subtilis thrS and thrZ. Here we discuss our results in the context of evolution of the threonylation systems and of the position of T. thermophilus in the phylogenic tree.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call