Abstract

BackgroundGen(om)e duplication events are hypothesized as key mechanisms underlying the origin of phenotypic diversity and evolutionary innovation. The diverse and species-rich lineage of teleost fishes is a renowned example of this scenario, because of the fish-specific genome duplication. Gene families, generated by this and other gene duplication events, have been previously found to play a role in the evolution and development of innovations in cichlid fishes - a prime model system to study the genetic basis of rapid speciation, adaptation and evolutionary innovation. The distal-less homeobox genes are particularly interesting candidate genes for evolutionary novelties, such as the pharyngeal jaw apparatus and the anal fin egg-spots. Here we study the dlx repertoire in 23 East African cichlid fishes to determine the rate of evolution and the signatures of selection pressure.ResultsFour intact dlx clusters were retrieved from cichlid draft genomes. Phylogenetic analyses of these eight dlx loci in ten teleost species, followed by an in-depth analysis of 23 East African cichlid species, show that there is disparity in the rates of evolution of the dlx paralogs. Dlx3a and dlx4b are the fastest evolving dlx genes, while dlx1a and dlx6a evolved more slowly. Subsequent analyses of the nonsynonymous-synonymous substitution rate ratios indicate that dlx3b, dlx4a and dlx5a evolved under purifying selection, while signs of positive selection were found for dlx1a, dlx2a, dlx3a and dlx4b.ConclusionsOur results indicate that the dlx repertoire of teleost fishes and cichlid fishes in particular, is shaped by differential selection pressures and rates of evolution after gene duplication. Although the divergence of the dlx paralogs are putative signs of new or altered functions, comparisons with available expression patterns indicate that the three dlx loci under strong purifying selection, dlx3b, dlx4a and dlx5a, are transcribed at high levels in the cichlids’ pharyngeal jaw and anal fin. The dlx paralogs emerge as excellent candidate genes for the development of evolutionary innovations in cichlids, although further functional analyses are necessary to elucidate their respective contribution.

Highlights

  • Gen(om)e duplication events are hypothesized as key mechanisms underlying the origin of phenotypic diversity and evolutionary innovation

  • Our analyses indicate the presence of dlx3a in cichlids and that the dlx repertoire of cichlid fishes is shaped by differential selection pressures and rates of evolution, with signs of positive selection on specific sites in dlx1a, dlx2a, dlx3a and dlx4b

  • Dlx protein sequence comparison in teleost fishes The tblastx searches of the teleost dlx proteins resulted in the retrieval of eight dlx genes in all four cichlid species

Read more

Summary

Introduction

Gen(om)e duplication events are hypothesized as key mechanisms underlying the origin of phenotypic diversity and evolutionary innovation. Gene families, generated by this and other gene duplication events, have been previously found to play a role in the evolution and development of innovations in cichlid fishes - a prime model system to study the genetic basis of rapid speciation, adaptation and evolutionary innovation. Teleost fishes (Teleostei) are among the most diverse lineages on Earth and with nearly 30,000 species the most species-rich vertebrate group. This is in stark contrast to the more basal non-teleost ray-finned fishes that are characterized by small numbers of species. A causal explanation for this discrepancy in speciation rates between the derived Teleostei and the non-teleost ray-finned fishes might be the fish-specific genome duplication (FSGD) that. It has been shown that different mechanisms such as cisregulatory evolution, changes in protein function and posttranscriptional regulation of the Hox genes contribute to morphological diversification (reviewed in e.g., [8,15,16])

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call