Abstract

Certain prokaryotic transport proteins similar to the lactose permease of Escherichia coli (LacY) have been identified by BLAST searches from available genomic databanks. These proteins exhibit conservation of amino acid residues that participate in sugar binding and H(+) translocation in LacY. Homology threading of prokaryotic transporters based on the X-ray structure of LacY (PDB ID: 1PV7) and sequence similarities reveals a common overall fold for sugar transporters belonging to the Major Facilitator Superfamily (MFS) and suggest new targets for study. Evolution-based searches for sequence similarities also identify eukaryotic proteins bearing striking resemblance to MFS sugar transporters. Like LacY, the eukaryotic proteins are predicted to have 12 transmembrane domains (TMDs), and many of the irreplaceable residues for sugar binding and H(+) translocation in LacY appear to be largely conserved. The overall size of the eukaryotic homologs is about twice that of prokaryotic permeases with longer N and C termini and loops between TMDs III-IV and VI-VII. The human gene encoding protein FLJ20160 consists of six exons located on more than 60,000 bp of DNA sequences and requires splicing to produce mature mRNA. Cellular localization predictions suggest membrane insertion with possible proteolysis at the N terminus, and expression studies with the human protein FJL20160 demonstrate membrane insertion in both E.coli and Pichia pastoris. Widespread expression of the eukaryotic sugar transport candidates suggests an important role in cellular metabolism, particularly in brain and tumors. Homology is observed in the TMDs of both the eukaryotic and prokaryotic proteins that contain residues involved in sugar binding and H(+) translocation in LacY.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.