Abstract

The MinION sequencer by Oxford Nanopore Technologies turns DNA and RNA sequencing into a routine task in biology laboratories or in field research. For downstream analysis it is required to have a sufficient amount of target reads. Especially prokaryotic or bacteriophagic sequencing samples can contain a significant amount of off-target sequences in the processed sample, stemming from human DNA/RNA contamination, insufficient rRNA depletion, or remaining DNA/RNA from other organisms (e.g. host organism from bacteriophage cultivation). Such impurity, contamination and off-targets (ICOs) block read capacity, requiring to sequence deeper. In comparison to second-generation sequencing, MinION sequencing allows to reuse its chip after a (partial) run. This allows further usage of the same chip with more sample, even after adjusting the library preparation to reduce ICOs. The earlier a sample’s ICOs are detected, the better the sequencing chip can be conserved for future use. Here we present sequ-into, a low-resource and user-friendly cross-platform tool to detect ICO sequences from a predefined ICO database in samples early during a MinION sequencing run. The data provided by sequ-into empowers the user to quickly take action to preserve sample material and chip capacity. sequ-into is available from https://github.com/mjoppich/sequ-into

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.