Abstract

Reliable nasopharyngeal carcinoma (NPC) segmentation plays an important role in radiotherapy planning. However, recent deep learning methods fail to achieve satisfactory NPC segmentation in magnetic resonance (MR) images, since NPC is infiltrative and typically has a small or even tiny volume with indistinguishable border, making it indiscernible from tightly connected surrounding tissues from immense and complex backgrounds. To address such background dominance problems, this paper proposes a sequential method (SeqSeg) to achieve accurate NPC segmentation. Specifically, the proposed SeqSeg is devoted to solving the problem at two scales: the instance level and feature level. At the instance level, SeqSeg is forced to focus attention on the tumor and its surrounding tissue through the deep Q-learning (DQL)-based NPC detection model by prelocating the tumor and reducing the scale of the segmentation background. Next, at the feature level, SeqSeg uses high-level semantic features in deeper layers to guide feature learning in shallower layers, thus directing the channel-wise and region-wise attention to mine tumor-related features to perform accurate segmentation. The performance of our proposed method is evaluated by extensive experiments on the large NPC dataset containing 1101 patients. The experimental results demonstrated that the proposed SeqSeg not only outperforms several state-of-the-art methods but also achieves better performance in multi-device and multi-center datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.