Abstract
Mitochondrial dysfunction is a recognized feature of sepsis, characterized by ultrastructural damage, diminished oxidative phosphorylation, and depletion of mitochondrial antioxidant capacity observed in deceased septic patients. LPS tolerance induces a controlled response to sepsis. This study aimed to evaluate the function of tolerant mitochondria after cecal ligation and puncture (CLP)-induced sepsis. Mytochondrial oxygen consumption was determined using polarography. Extraction and quantification of RNA for the expression of Tfam, Nrf-1, and Ppargc-1α, and respiratory complex activity were measured. CLP-tolerant animals presented preserved respiratory rates of S3 and S4 and a ratio of respiratory control (RCR) compared to CLP-nontolerant animals with reduced oxidative phosphorylation and increased uncoupled respiration. Complex I Vmax was reduced in septic animals; however, CLP animals sustained normal Vmax. Mitochondrial biogenesis was preserved in CLP-tolerant animals compared to the CLP-nontolerant group, likely due to increased TFAM expression. LPS tolerance protected septic animals from mitochondrial dysfunction, favoring mitochondrial biogenesis and preserving mitochondrial respiration and respiratory complex I activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.