Abstract

Septic shock is a severe systemic response to bacterial infection. Receptor for advanced glycation end products (RAGE) plays a role in immune reactions to recognize specific molecular patterns as pathogen recognition receptors. However, the interaction between LPS, the bioactive component of bacterial cell walls, and RAGE is unclear. In this study, we found direct LPS binding to RAGE by a surface plasmon resonance assay, a plate competition assay, and flow cytometry. LPS increased TNF-α secretion from peritoneal macrophages and an NF-κB promoter-driven luciferase activity through RAGE. Blood neutrophils and monocytes expressed RAGE, and TLR2 was counterregulated in RAGE(-/-) mice. After LPS injection, RAGE(+/+) mice showed a higher mortality, higher serum levels of IL-6, TNF-α, high mobility group box 1, and endothelin-1, and severe lung and liver pathologies compared with RAGE(-/-) mice without significant differences in plasma LPS level. Administration of soluble RAGE significantly reduced the LPS-induced cytokine release and tissue damage and improved the LPS-induced lethality even in RAGE(-/-) as well as RAGE(+/+) mice. The results thus suggest that RAGE can associate with LPS and that RAGE system can regulate inflammatory responses. Soluble RAGE would be a therapeutic tool for LPS-induced septic shock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.