Abstract

The Min system, which inhibits assembly of the cytokinetic protein FtsZ, is largely responsible for positioning the division site in rod-shaped bacteria. It has been reported that MinJ, which bridges DivIVA and MinD, is targeted to the cell poles by an interaction with DivIVA, and that MinJ in turn recruits MinCD to the cell poles. MinC, however, is located primarily at active division sites at mid-cell when expressed from its native promoter. Surprisingly, we found that Bacillus subtilis MinD is located at nascent septal membranes and at an asymmetric site on lateral membranes between nascent septal membranes in filamentous cells lacking MinJ or DivIVA. Bacillus subtilis MinD has two amphipathic α-helices rich in basic amino acid residues at its C-terminus; one of these, named MTS1 here, is the counterpart of the membrane targeting sequence (MTS) in Escherichia coli MinD while the other, named MTS-like sequence (MTSL), is the nearest helix to MTS1. These amphipathic helices were located independently at nascent septal membranes in cells lacking MinJ or DivIVA, whereas elimination of the helices from the wild type protein reduced its localization considerably. MinD variants with altered MTS1 and MTSL, in which basic amino acid residues were replaced with proline or acidic residues, were not located at nascent septal membranes, indicating that the binding to the nascent septal membranes requires basic residues and a helical structure. The septal localization of MTSL, but not of MTS1, was dependent on host cell MinD. These results suggest that MinD is targeted to nascent septal membranes via its C-terminal amphipathic α-helices in B. subtilis cells lacking MinJ or DivIVA. Moreover, the diffuse distribution of MinD lacking both MTSs suggests that only a small fraction of MinD depends on MinJ for its localization to nascent septal membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call