Abstract

The most common clinical manifestation of sepsis-related encephalopathy (SAE) is the deterioration of cognitive function. Besides, increasing evidence shows that SAE patients exhibit coordination and sensorimotor dysfunctions, suggesting that SAE affects motor function with unclear mechanism. In the present work, we explored the effects of SAE on cerebellar Purkinje cells (PCs) using cecal ligation and perforation (CLP), a standard model for inducing sepsis symptoms similar to those in human patients. Our results show that the sepsis can activate microglia in the cerebellum and promote the secretion of inflammatory factor TNF-α, which increases intrinsic excitability and synaptic transmission of PCs, inhibits the synaptic plasticity of PCs, and impairs motor learning of mice. These findings address how SAE changes PC functions, and thereby are of great significance to reveal pathophysiological feathers of human patients suffering from SAE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.