Abstract

The migration of long chain soluble lithium polysulfides through the separator to the anode, the so called “shuttle effect”, is one of the major issues responsible for the capacity degradation of lithium-sulfur (Li-S) batteries. In this work, N and S co-doped mesoporous carbon was prepared by a novel egg shell template method and utilized to modify the separator for high performance Li-S batteries. The discharge capacity of the second cycle retained at 1467mAhg−1 at 1C after 200 cycles and decayed at 0.20% per charge-discharge cycle, and a reversible capacity of 561mAhg−1 was achieved even at 5C rate after 200 cycles. The prepared material showed a porous hollow sphere morphology with larger surface area and N and S co-doped that can provide great electrochemical property as well as surface chemistry for the adsorption of the intermediate polysulfides. After separator modification, XPS analysis revealed that pyrrolic-type N, pyridinic-like N, and thiosulphate were the major factors contributing to the superior electrochemical performance of the CS/S cathode. This work also provided a rational design strategy for the modification of separator to effectively utilize the active sulfur and to retard the migration of dissolved polysulfides, which enhanced the performance of high energy density Li-S batteries with long cycling life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.