Abstract

Separative extended-gate AlGaAs/GaAs high electron mobility transistor (HEMT) biosensors based on the capacitance change strategy are proposed and fabricated. The working mechanism underlying this strategy is clearly clarified via examining the capacitance evolution on biorecognition and the capacitance matching issue between the HEMT and the sensing pad. The fabricated biosensors demonstrate a good linear current/voltage response to a label-free prostate-specific antigen (PSA) target over a broad concentration range of 100 fg/ml to 10 ng/ml in both 0.1× and 1× phosphate buffered saline solutions. Specifically, the sensitivity variation approaches 8.7% dec−1 at the critical concentration level of 2–8 ng/ml that enters the normal PSA region in the human body. The advantages of high sensitivity, low-cost, and convenience of usage make the proposed HEMT biosensors potential candidates for prostate cancer diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.