Abstract

Organophilic pervaporation (OPV) has been considered as one of the most promising separation processes for the recovery of biofuels from fermentation broths, however, in addition to preferred target product – liquid biofuels, the yeast cells and fermentation nutrients could affect the recovery efficiency of biofuels from broths by pervaporation. In this paper, the influence of the yeast cells and the fermentation nutrient components such as the sources of carbon, nitrogen and salts on the separation performance of the vinyltriethoxysilane (VTES)-grafted- (VTES-g-) silicalite-1/PDMS/PAN thin-film composite membrane was conducted systematically. The results revealed that glucose, xylose, protein, and salts cannot permeate through the membrane. Glucose concentration in the fermentation broth should be kept at a lower level (less than 20g/L) to eliminate its deleterious influence on ethanol flux and membrane selectivity. Xylose and corn steep liquor (CSL) have little effect on the pervaporation performance of the composite membrane. The addition of NaCl improved the membrane selectivity and ethanol flux but slightly lowered down total permeation flux. Adding dry yeast cells to the ethanol solution can enhance the turbulence in the feed mixtures, resulting an increase of the membrane flux and selectivity. The pervaporation performance of fermentation broths was also studied. The results showed that the nutrients and the deposition of yeast cells on the membrane surface didn’t deteriorate the pervaporation performance, indicating excellent fouling resistance of the novel VTES-g-silicalite-1/PDMS/PAN composite membrane in operation with fermentation broths. The continuous ethanol fermentation can be directly connected to the in-situ pervaporative recovery system without requiring prior removal of yeast cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call