Abstract

A novel monohydroxycucurbit[7]uril-based stationary phase for capillary gas chromatography (GC) has been produced. For this, a capillary column coating was made using a sol–gel technique, incorporating synthesized monohydroxycucurbit[7]uril [(OH)Q[7]] and hydroxy-terminated poly(dimethylsiloxane) (OH-PDMS) into the sol–gel network through hydrolysis and polycondensation and chemical sol–gel grafting to the inner wall of a fused-silica tube. The preparation method may produce a coating with greater integrity, which gives the prepared column a higher separation efficiency and better selectivity toward analytes than a reported stationary phase based on neat cucurbit[n]urils (Q[n]s). The prepared (OH)Q[7]/PDMS column had 3,225 theoretical plates per meter determined using naphthalene at 120°C and exhibited a weakly polar nature. The (OH)Q[7]/PDMS column has high resolution over a broad spectrum of analytes with symmetrical peak shapes and exhibited better separation performance than commercial capillary columns and reported columns based on neat Q[n]s that failed to resolve some critical analytes. Moreover, the column also showed good thermal stability up to 300°C and separation repeatability with relative standard deviation values in the range of 0.01–0.11% for intraday, 0.11–0.32% for interday and 0.29–0.58% for column-to-column. In addition, the energy effect on the retention of analytes on the (OH)Q[7]/PDMS stationary phase was investigated. The results indicated that retention on the column was determined mainly by the enthalpy change. As demonstrated, the proposed coating method can address some disadvantages that exist with the reported Q[n]s columns and combine the full advantages of (OH)Q[7] with the sol–gel coating method while achieving outstanding GC separation performance.

Highlights

  • Capillary gas chromatography (GC) is a high-resolution analytical method

  • The chemical ingredients used to create the sol–gel (OH)Q[7]/PDMS coating are presented in Table S1 in the supporting information

  • Being characterized by the interactions of hydroxyl groups during all steps, (OH)Q[7] and OH-PDMS are used as the components of the coating stationary phase to form chemical bonds between the coating and the capillary inner surface (Zeng et al, 2001)

Read more

Summary

Introduction

Capillary gas chromatography (GC) is a high-resolution analytical method. A selective stationary phase and an efficient column preparation method are the two main factors for GC column separation with high resolution (Luong, 2002). Chromatographic parameters including column efficiency and McReynolds’ constants, separation performance of compounds with different polarity and structure, and solvent and thermal stability for the prepared (OH)Q[7]/PDMS capillary column were investigated separately.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call