Abstract

We continue the analytical solution of the integrable system with two degrees of freedom arising as the generalization of the 4th Appelrot class of motions of the Kowalevski top for the case of two constant force fields [Kharlamov, RCD, vol. 10, no. 4]. The separated variables found in [Kharlamov, RCD, vol. 12, no. 3] are complex in the most part of the integral constants plane. Here we present the real separating variables and obtain the algebraic expressions for the initial Euler-Poisson variables. The finite algorithm of establishing the topology of regular integral manifolds is described. The article straightforwardly refers to some formulas from [Kharlamov, RCD, vol. 12, no. 3].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.