Abstract

The question of the separability of the Dirac equation in metrics with local rotational symmetry is reexamined by adapting the analysis of Kamran and McLenaghan [J. Math. Phys. 25, 1019 (1984)] for the metrics admitting a two-dimensional Abelian local isometry group acting orthogonally transitively. This generalized treatment, which involves the choice of a suitable system of local coordinates and spinor frame, allows one to establish the separability of the Dirac equation within the class of metrics for which the previous analysis of Iyer and Vishveshwara [J. Math. Phys. 26, 1034 (1985)] had left the question of separability open.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.