Abstract

We studied the effectiveness of hydrogen peroxide in removing visible laser-induced photoluminescence from the Raman spectra of compact bone of mice. In testing various bone sample preparations, we found that hydrogen peroxide bleaching was most effective when applied directly to fresh or fresh-frozen bone samples. The extent of the reduction in photoluminescence in the peroxide-bleached bone was such that the Raman spectrum could be readily recorded with 532-nm laser excitation. A comparison of bone samples before and after hydrogen peroxide bleaching shows that the Raman shifts of all the collagen and bioapatite bands are unaffected by the peroxide bleach. Moreover, the low spectral backgrounds of the peroxide-treated bone samples permit the Raman spectra of these two major components of bone to be fully separated. The Raman spectrum of collagen-rich periosteum was subtracted from the Raman spectrum of compact bone, which isolated the Raman spectral signature of the bioapatite fraction of the bone. This derived spectrum of bioapatite was then used, through spectral subtraction, to generate the spectral signature of the collagen component of the bone. All the major and minor Raman bands of collagen and bioapatite can be identified in these separate spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.