Abstract
The influence of second-order magneto-optic effects on Kerr effect magnetometry of epitaxial exchange coupled Fe50Mn50/Ni81Fe19-bilayers is investigated. A procedure for separation of the first-and second-order contributions is presented. The full angular dependence of both contributions during the magnetization reversal is extracted from the experimental data and presented using gray scaled magnetization reversal diagrams. The theoretical description of the investigated system is based on an extended Stoner–Wohlfarth model, which includes an induced unidirectional and fourfold anisotropy in the ferromagnet, caused by the coupling to the antiferromagnet. The agreement between the experimental data and the theoretical model for both the first- and second-order contributions are good, although a coherent reversal of the magnetization is assumed in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.