Abstract

Dual-task costs are often significantly reduced or eliminated when both tasks use compatible stimulus-response (S-R) pairs. Either by design or unintentionally, S-R pairs used in dual-task experiments that produce small dual-task costs typically have two properties that may reduce dual-task interference. One property is that they are easy to keep separate; specifically, one task is often visual-spatial and contains little verbal information and the other task is primarily auditory-verbal and has no significant spatial component. The other property is that the two sets of S-R pairs are often compatible at the set-level; specifically, the collection of stimuli for each task is strongly related to the collection of responses for that task, even if there is no direct correspondence between the individual items in the sets. In this paper, we directly test which of these two properties is driving the absence of large dual-task costs. We used stimuli (images of hands and auditory words) that when previously been paired with responses (button presses and vocal utterances) produced minimal dual-task costs, but we manipulated the shape of the hands in the images and the auditory words. If set-level compatibility is driving efficient performance, then these changes should not affect dual-task costs. However, we found large changes in the dual-task costs depending on the specific stimuli and responses. We conclude that set-level compatibility is not sufficient to minimize dual-task costs. We connect these findings to divisions within the working memory system and discuss implications for understanding dual-task performance more broadly.

Highlights

  • Doing two things at the same time typically gives rise to performance impairments, known in laboratory settings as dual-task costs

  • Because, according to IM theory, representations of actions include their expected consequences, a stimulus similar to the outcome of an action will directly activate a portion of its response code, facilitating selection so that central operations that would otherwise be required by both tasks can be avoided

  • By “directly,” it is implied that the desired response can be activated without the intervention of central operations that typically serve as a bottleneck during dual-task performance (Greenwald, 1972)

Read more

Summary

Introduction

Doing two things at the same time typically gives rise to performance impairments, known in laboratory settings as dual-task costs. As a result of this similarity, there is a significant amount of overlap between the stimulus and the response, causing the response selection process to be highly efficient for both tasks (Greenwald and Shulman, 1973). In these cases, there is no evidence of dualtask interference. Because, according to IM theory, representations of actions include their expected consequences, a stimulus similar to the outcome of an action will directly activate a portion of its response code, facilitating selection so that central operations that would otherwise be required by both tasks can be avoided. By “directly,” it is implied that the desired response can be activated without the intervention of central operations that typically serve as a bottleneck during dual-task performance (Greenwald, 1972)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call