Abstract
Counter-current distribution in an aqueous Dextran-polyethylene glycol two-phase system has been used to fractionate membrane fragments obtained by press treatment of Class II chloroplasts. By the counter-current distribution technique membrane particles are separated according to their surface properties such as charge and hydrophobicity. The fractions obtained were analysed with respect to photochemical activities, chlorophyll and P-700 contents. The Photosystem II enrichment after counter-current distribution was better than that obtained by differential centrifugation of the disrupted chloroplasts. However, the best separation of Photosystem I and II enriched particles could be achieved if differential centrifugation was combined with the counter-current distribution technique. Each centrifugal fraction could be further separated into Photosystems I and II enriched fractions since the Photosystem II particles preferred the dextran-rich bottom phase while the Photosystem I particles preferred the polyethylene glycol-rich top phase. By this procedure it was possible, without the use of detergents, to obtain vesicles which were more enriched in Photosystem II as compared to intact grana stacks. The partition behaviour of undisrupted Class II chloroplasts and the Photosystem I centrifugal fraction was the same. This similarity indicates that the membrane which is exposed to the surrounding polymers by the Class II chloroplasts is the Photosystem I rich membrane of the stroma lamellae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.