Abstract
We address the problem of source separation in echoic and anechoic environments, with a new algorithm which adaptively learns a set of sparse stereo dictionary elements, which are then clustered to identify the original sources. The atom pairs learned by the algorithm are found to capture information about the direction of arrival of the source signals, which allows to determine the clusters. A similar approach is also used here to extend the dictionary learning K singular value decomposition (K-SVD) algorithm, to address the source separation problem, and results from the two methods are compared. Computer simulations indicate that the proposed adaptive sparse stereo dictionary (ASSD) algorithm yields good performance in both anechoic and echoic environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.