Abstract
Cell culture derived rotavirus preparations contain a mixture of double-layered particles (DLPs) and triple-layered particles (TLPs). Characterization of rotavirus vaccine products is important to demonstrate a consistent manufacturing process. A capillary zone electrophoresis (CZE) method was developed to separate and quantitate rotavirus DLPs and TLPs in cell lysate samples and CsCl-purified vaccine preparations of each of the five reassortant rotavirus vaccine strains (G1, G2, G3, G4 and P1) contained in the pentavalent rotavirus vaccine, RotaTeq®. The CZE electropherograms showed that migration of DLPs and TLPs from both CsCl-purified and cell lysates resulted in a separation distance of approximately 3min between the two rotavirus particle types. The identification of the peak(s) containing TLPs was confirmed for both CsCl-purified and cell lysate samples by treatment of the samples with 50mM EDTA, which converted TLPs to DLPs. The migration pattern of the DLPs was consistent (23–24min) among all reassortant strains tested, whether the DLPs were CsCl-purified or from cell lysates. However, the migration pattern of the TLP electropherograms of the reassortant rotavirus strains in cell lysates differed from those of the CsCl-purified reassortant rotavirus strains. In the cell lysate samples, the TLPs of the G1 and G2 reassortant rotavirus strains migrated slower that the corresponding TLPs from the CsCl-purified samples, while the migration time of the TLPs of the G3, G4 and P1 reassortants strains from the cell lysate and CsCl-purified samples appeared similar. Also, the TLPs from the CsCl-purified samples appeared as a defined single peak, while most of the TLPs from the cell lysate samples appeared as a broad peak or as multiple peaks. All the migration patterns were reproducible and consistent. Taking into account reproducibility, objective quantitation, and minimal sample manipulation as well as volume, CZE allowed consistent and quantitative characterization of rotavirus vaccine preparations, which is required for evaluation of vaccine products, including process validation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.