Abstract

A method for the separation of no-carrier-added arsenic radionuclides from the bulk amount of proton-irradiated GeO2 targets as well as from coproduced radiogallium was developed. The radionuclides 69Ge and 67Ga produced during irradiation of GeO2 were used as tracers for Ge and Ga in the experiments. After dissolution of the target the ratio of As(III) to As(V) was determined via thin layer chromatography (TLC). The extraction of radioarsenic by different organic solvents from acid solutions containing alkali iodide was studied and optimized. The influence of the concentration of various acids (HCl, HClO4, HNO3, HBr, H2SO4) as well as of KI was studied using cyclohexane. The optimum separation of radioarsenic was achieved using cyclohexane with 4.75 M HCl and 0.5 M KI and its back-extraction with a 0.1% H2O2 solution. The separation leads to high purity radioarsenic containing no radiogallium and <0.001% [69Ge]Ge. The overall radiochemical yield is 93 ± 3%. The practical application of the optimized procedure in the production of 71As and 72As is demonstrated and batch yields achieved were in the range of 75–84% of the theoretical values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call