Abstract

The apex-shifted hyperbolic Radon transform (ASHRT) which is defined as an extension of standard hyperbolic Radon transform (HRT) shifts the apexes of basis functions along the offset. In this paper, we develop an improved sparse ASHRT to separate the diffractions from reflections before stacking. To speed up the calculation, the forward and adjoint operators of ASHRT in the time domain are replaced with the Fourier-kernel Stolt-based modelling and imaging operators. To overcome the limitation of velocity variations, the time axis stretching is implemented. With lower computation cost compared to the time domain operators, we can collapse the apex-shifted events with one velocity. Meanwhile, we introduce a sparsity-promoting inversion by the fast iterative shrinkage thresholding algorithm (FISTA), which produces a sparse Radon panel to separate the diffracted energy easily. Two synthetic examples of variable velocity model show that our proposition is robust and efficient. Another marine data example further demonstrates the effectiveness of this method in separation of prestack seismic diffractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.