Abstract

We consider a family of stadium-like billiards with time-dependent boundaries. Two different cases of time dependence are studied: (i) the fixed boundary approximation and (ii) the exact model which takes into account the motion of the boundary. It is shown that when the billiards possess strong chaotic properties, the sequence of their boundary perturbations is the Fermi acceleration phenomenon which is three times larger than in the case of the fixed boundary approximation. However, weak mixing in such billiards leads to particle separation. Depending on the initial velocity three different things occur: (i) the particle ensemble may accelerate; (ii) the average velocity may stay constant or (iii) it may even decrease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.