Abstract

Vibration sorting is a common means in separating non-spherical particles from spherical particles. In this paper, the discrete element method (DEM) is applied to simulate the behavior of spherical particles and non-spherical particles motion on an inclined vibrating plate (IVP), and the influence of different operating parameters on the separation performance of the mixed particles is investigated. In the DEM simulations, both the spherical and non-spherical particles are modeled by super-ellipsoids. The simulation results show that the optimal vibration amplitude and frequency exist for the high separation efficiency of the mixed particles. The separation efficiency can also be enhanced by properly increasing the friction coefficient or decreasing the restitution coefficient between particles and plate. It is easier to separate the non-spherical particles from the spherical particles by diminishing the sphericity of particles. Besides, as long as the inclination angle of the plate is set at appropriate range and the feed rate of the mixed particles is moderate, the non-spherical particles can be separated effectively from the spherical particles. This research could be helpful for the understanding and optimal design of vibration sorting device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.