Abstract
Due to the oolitic structure of the high phosphorus iron ore and the closely wrapping of apatite and hematite phases, an approach using jet mill was utilized to grind the ore to ultrafine 0.01 to 0.001 mm, which realizes the dissociation of apatite phase and hematite phase. Then in a laboratory scale rotary furnace, high phosphorus ores of different sizes were reduced by reducing gas at sub-melting point temperatures (973 to 1173 K [700 to 900 °C]). In the rotating inclined reactor, the ore particles reacted with the reducing gas coming from the opposite direction in a rolling and discrete state, which greatly improved the kinetic conditions. In this study, the reaction rate increases significantly with the decrease of particle size. For the ultrafine high phosphorus iron ores, the metallization ratio can reach 83.91 to 97.32 pct, but only 33.24 to 40.22 pct for powders with the size of 0.13 to 0.15 mm. The reduced particles maintained their original sizes, without the presence of sintering phenomenon or iron whisker. Hence, two kinds of products were easily obtained by magnetic separation: the iron product with 91.42 wt pct of Fe and 0.19 wt pct of P, and the gangue product with 13.77 wt pct of Fe and 2.32 wt pct of P.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Metallurgical and Materials Transactions B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.