Abstract

N-Methylformamide (NMF)-based matrices for capillary electrophoretic separation of nucleic acids have been developed. The use of an organic solvent as liquid base for the separation matrices allowed a hydrophobic polymer, C16-derivatized 2-hydroxyethyl cellulose (HEC), to be employed as structural element in the sieving medium. With a matrix consisting of 5% w/v of this polymer dissolved in NMF containing 50 mM ammonium acetate, p(dA)12-18 and p(dA)40-60 oligonucleotides were baseline separated. The addition of ammonium acetate to the buffer and separation matrix resulted in enhanced separation efficiency. Furthermore, it was possible to tailor the sieving performance of the separation medium by the use of a binary mixture of C16-derivatized HEC and PVP. Differences in sieving behavior of the various matrices evaluated are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.