Abstract
New copolymers of acrylamide and beta-D-glucopyranoside were synthesized and characterized. The different reactivity of the two monomers towards radical polymerization meant we could control the growth of the polymer chains whose length was inversely related to the number of glucose residues incorporated in the copolymers. The properties of these polymers were investigated in the separation of oligonucleotides and double-stranded DNA by capillary electrophoresis (CE) in coated and uncoated capillaries. The new copolymers were a suitable matrix for CE due to their high-resolving capacity and low viscosity. We also looked into the advantages of a new method of dynamic suppression of electroosmotic flow based on the addition of small amounts (0.03-0.05%) of dimethylacrylamide to the sieving and to the running buffer. A complete test was run on the reproducibility and efficiency of separations carried out in a permanently and dynamically coated capillary, and the advantages and disadvantages of the two methods were compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.