Abstract

177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β− emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals.

Highlights

  • 177Lu has sprung as a promising radionuclide for targeted therapy

  • The demand of 177Lu is expected to grow, since it is approved for use in prostate cancer treatment and many other treatments are in advanced clinical trial stages[8,9,10]

  • We report a separation method that allows the separation of chemically

Read more

Summary

Introduction

Nuclear isomers of Te, Co, and Se have been separated in the past using internal conversion[16,17,18] In these cases bond rupture resulted in chemically separable forms which do not readily undergo exchange, making the separation feasible. The method makes use of the nuclear after-effects caused by the internal conversion to separate the newly formed ground state (177Lu) from the metastable state (177mLu). Our nuclear isomer separation process is based on the combination of three elements (see Fig. 1(b)): (i) a very inert complex with slow association-dissociation kinetics, (ii) the nuclear after-effects of the internal conversion process that breaks the chemical bonds due to the highly charge state created and (iii) a separation method able to set apart the complexed element and the freed one

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.